Question number	Answer	Notes	Marks
1 (a)	M1 iron reacted with oxygen	Accept iron combined/bonded with oxygen Accept iron oxide formed Accept iron is oxidised Ignore iron uses oxygen Ignore iron rusts Ignore references to reacting with water	2
	M2 <u>all oxygen</u> is reacted / (all) <u>oxygen</u> used up / no <u>oxygen</u> left	Accept references to 20% or 20cm ³ of the air which is oxygen used up/reacted	
		Reject all iron used up Ignore reaction has finished	
(b)	M1 iron(II) sulfate / iron sulfate	reject any other oxidation state	2
	M2 hydrogen		

(c)	M1 (Fe ²⁺) – green precipitate/solid	ignore shades reject other colours eg blue- green	2
	M2 (Fe ³⁺) – brown precipitate/solid	accept red-brown / orange brown Ignore rust coloured	
		reject red on its own	
		Allow 1 mark if both answers correct but reversed	
		Ignore references to colours of solutions	

Question number	Answer	Notes	Marks
2 (a)	M1 (mol NaHCO ₃ =) 10.5/84 or 0.125 M2 (so mass CO ₂ = 0.0625 x 44 =) 2.8 (g)	correct final answer with no working scores 2 accept 2.75 M2 CQ on M1	2
	OR		
	M1 168 g NaHCO ₃ give 44 g CO ₂		
	M2 10.5 g NaHCO₃ give 2.75 g CO₂		
(b)		correct final answer with no working scores 2 if answer is incorrect mark CQ to (a)	2
	M1 (mol CO ₂ =) $2.75 \div 44$ or 0.0625		
	M2 (0.0625 x 24000) = 1500 (cm ³)	CQ answer to M1	
		accept 1.5(00) <u>dm³</u>	

Question number	Answer	Notes	Marks
3 a i	carbon monoxide		1
ii	decreases capacity of blood (cells) to carry oxygen OR stops blood (cells) from carrying oxygen	Accept CO combines with haemoglobin / forms carboxyhaemoglobin Accept CO displaces/replaces oxygen in haemoglobin Ignore CO combines with red blood cells Ignore references to suffocation / lack of oxygen in lungs stopping breathing / gas exchange Ignore just affects haemoglobin Reject destroys haemoglobin	1
b i	$6KCIO_3 + S + P_4S_3 \rightarrow 6KCI + 4SO_2 + P_4O_{10}$	M1 coefficient of 6 for KCl M2 coefficient of 4 for SO ₂ Max 1 mark if equation unbalanced Ignore 1 for other coefficients 0 for other coefficients loses M2	2
ii	activation (energy)		1
		Total	5 marks

Question number	Expected answer	Accept	Reject	Marks
4 (a) (i)	108/24	1 mark for answer of 4.8(2) (molar volume		1
	= 4.5	= 22.4dm ³)		1
(ii)	M_r of $NaN_3 = 65$	23 + (14 x3)		1
	Moles of $NaN_3 = 3$ OR two thirds of (a)(i)			1
	Mass of $NaN_3 = 195$ (g) OR moles of $NaN_3 \times M_r$	Correct answer with no working scores 3		1
	[Mark consequentially at each stage]	-		
(b) (i)	Removes (harmful) sodium	Produces <u>more</u> nitrogen / gas OR bag inflates more quickly		1
(ii)	$K_2O(s) + SiO_2(s) \rightarrow K_2SiO_3(s)$ OR $K_2O(s) + SiO_2(s) \rightarrow K_2SiO_3(I)$			1
	IGNORE same numbers of Na₂O on both sides of equation			
(c) (i)	Precipitation	<u>Double</u> decomposition	Double displacement	1 1
(ii)	Filtration / filter IGNORE refs to adding water	Decanting / pour off liquid	Sieving / evaporation / distillation / crystallisation / heat	1

Total 9 Marks

Question	Answer	Accept	Reject	Marks
number 5 (a) (i)	M1 - $\frac{144}{24000}$	One mark for (144 ÷ 24) = 6		1
	M2 - 0.006			1
(ii)	0.006			1
(iii)	M1 - 0.888 0.006 M2 - 148 (MUST be a whole number)			1
				1
(iv)	$M1 - (CO_3) = 60$			1
	M2 - 88			1
	M3 - Sr / strontium	answer csq on correctly calculated value of M2 (i.e. metal closest to calculated		1
	Mark csq throughout part (a)	A _r), but <u>must</u> be a Group 2 metal		

Question Number	Answer	Α	Reject	Marks
5 (b)	Any two from:			2
	M1 - gas was lost between adding acid and replacing bung			
	M2 - bung does not fit/there are leaks in the apparatus			
	M3 - some gas dissolved/reacted in the water			
	M4 - the carbonate was impure			
	M5 - the temperature (of the gas) was <u>lower</u> than room temperature/25°C			
			Total	10

Question number	Answer	Accept	Reject	Marks
6 (a)	(15.0 ÷1000) x 0.0010			1
	$= 1.5(0) \times 10^{-5}$	1.5 x 10 ⁻² for 1 mark		1
(b)	answer to (a)			1
(c)	answer to (b) x 1000 25.0			1
	correct evaluation (= 0.0006(0))	answer to (b) ÷ 25 for 1 mark		1
(d)	$M_{\rm r}$ of $SO_2 = 64$			1
	answer to (c) x M_r of SO ₂ (= 0.038(4))			1
	Final answer must be to 2 or more sig fig			
(e)	The wine is drinkable	consequential on (d)		1
	Ignore any explanations			
			Total	8

Question number	Answer	Notes	Marks
7 (a)	B A D C		1 1 1 1
(b)	Mixture Compound Mixture		1 1 1
		Total	7